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ABSTRACT

A consistent Lagrangian theory for particles interacting through a
massive tensor (spin-2) field is formulated. The theory is non-linear; the
origin of non linearities is partly the same as in the massless Einstein
theory, partly can be traced to the inherent field dependence of rest mass
and momenta for tensor interaction. The theory reduces to the correct,
ghostless Pauli-Fierz structure in the linear limit and to the Einstein
theory in tﬁe massless case. The formalism is amenable to the study of
the properties of high density matter in situations where the interaction

mediated through the spin-2 f-mesons is important.




I. INTRODUCTION

In this paper we present a Lagrangian formalism for particles inter-
acting through a massive tensof (spin-2) field. Our motivation for doing
this is twofold. In the first place, theories of interaction of massive
higher-spin . fields pose certain basic problems of their own which, if not
treated carefully, can lead to inconsistent and unphysical results. In
contrast to scalar (spin 0) and vector (spin 1) fields, the interacting
massive spin-2 field theory is necessarily a non-linear theory. The non-
linearity originates from the physical requirement that a spin-2 field be
coupled to the total energy-momentum tensor of the system. An illustrative
example is the massless spin-2 field, better known as the gravitational field.
The Einstein field equations are non-linear, and the non-~linearity is due to
the fact that the source of the gravitational field is the energy-momentum
tensor of all fields including that of the gravitational field itself. We
find that the problem of constructing the Lagrangian for an interacting massive
spin-2 field essentially reduces to one of adding to the Einstein's field
equation a (non-linear) mass term that is consistent with the constraint
conditions that accompany any description of a higher-spin field. The past
invest:igationsl_7 that have focussed on the problem of massive spin-2 field
either (i) have ignored the problem of including the non-linear self-
interaction terms of (ii) have not set up the mass term correctly.

Our second motivation relates to astrophysical considerations. To be
specific, interest in pulsars and the behavior of matter at extremely high
densities have led to an increasing attention to the many~body problem of
relativistic neutron systems. When matter densities are higher than the

nuclear matter density, short-range forces arising from the exchange of spin-2




£° meson (1260 MeV) are expected to be non-negligible. The formalism that
we develop in this paper is used in the following paper to derive a theory
of relativistic neutrons interacting through a finite~-range spin-2 field
(in addition to scalar and vector fields). The resulting equation of state
is found to possess several novel features that are due to the spin-2
interaction. The preliminary applications of these results in relation

to the bulk properties of a neutron star have been reported by us in an
earlier paper.

The outline of this paper is as follows. In Section II we triefly
review the properties of a free spin-2 field and recall that even for a
free spin-2 field, there is a definite allowed form for the mass term that
is consistent with the constraint conditions on the field. Section IIIL
describes the problems associated with a theory of interacting massive
spin-2 field, and how we proceed to set up a consistent formalism for it.
The derivation of the full Lagrangian is presented in Section IV. Section V
discusses the problem of subsidiary condition in the non-linear theory and
Section VI the structure of the source term in a classical situation. Sub~-
sequent papers will deal with the Hartree-approximation both for a high
temperature gas of classical particles and for a zero temperature degenerate

gas of fermions interacting through a spin-2 (tensor) field.




II. THE FREE SPIN-2 FIELD

A massive spin-2 field is described by a symmetric "tensor-potential
of rank two, ¢uv. Such a tensor field has ten linearly independent components
and in general is a mixture of fields corresponding to irreducible represen-
tations of spin-2, spin-1 and two spin-0 components. It will describe a
spin-2 field only after we have removed the (3 + 1) - component vector

contribution (au¢uv) and the scalar contribution (tr ¢uv) by imposing the

following constraint conditions:
¥ =0 (2.1)

tr ¢ =n ¢ =0 (2.2)

(an ='diag. (-1, 1, 1, 1).) When the constraiﬁt conditions (2.1) and (2.2) are
satisfied, the residual five components will describe a pure spin-2 field.

As long as ¢uv represents a free field (i.e. not in interaction with
other fields), a Lagrangian quadratic in the field variable and its deriva-
tives can be constructed that gives the constraint conditions (2.1) and (2.2), and
provides a linear equation of motion. Single—parameter Lagrange functions

9 and Nath3. Bhargava and

having such properties have been devised by Rivers
Watangbe5 have formulated a 3-parameter Lagrange function from which they
de;ived the field equation, the constraint.conditions and alsé the condition
that the field variable be symmetric in its indices. Prescription for
constructing the generalized Lagrange function for a free system with arbitrary

spin has also been given by Changl0 who used the method of spin projection

operators introduced by Fronsdal.l1



The simplest form of the linear free field equations for the massive
(mass u) spin-2 field ¢uv’ from which the constraint conditions (2.1) and

(2.2) follow, can be written as follows:

p P + u2F P =0
w P TV %
where
D = 5252 6% 4+5 o 8%+ 3% &°
ny By u v v u
_ po 2 po _ p O
3 3 n + 29 nuv n nuv 3" 9 (2.3)
0o P O _ po
Fuv Gu Gv Ny M
and
32 = 3%
u
$=tro, (2.4)

6 L .
The quadratic (linearized) Lagrangian that yields Eq. (2.3) through R 0 is
8¢

”“ak¢kv (2.5)

t
[
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Conditions (2.1) and (2.2) now follow from the dynamics of the theory. The

divergence and trace of Eq. (2.3) provide,respectively
24P =
us(3 ¢pv 3v¢) 0 (2.6)

and

2(3%¢ = 370% ) = 3u20 (2.7




whose combinations are easily seen to yield (2.1) and (2.2). For this,
however, the mass term in the Lagrangian must be of the form as appearing
in Eq. (2.5) namely,

R TAC LD u2(¢uv¢uv - #2) (2,8)

This is usually referred to as the Pauli-Fierz Lagrangian for the spin-2

field.lz’13

It is easy to verify that with other choices for the mass term,
e.g.

-k u2(¢“"¢w - ag?) a#1

one cannot retain the conditions (2.1) and (2.2) simultaneously, Thus,
without the Pauli-Fierz form of the mass term, there will be admixtures of

lower spin states which may give rise to negative-energy ghosts.




IITI. THE INTERACTING SPIN-2 FIELD

The linear massless spin-2 field must be coupled to a conserved symmetric
tensor, which is identified with the energy-momentum tensor of the matter field,

tuv’ This requirement is a consequence of the identity
Up PO _ 1
and the resulting equation is

po - -
- ¢po K tuv (3.2)

where k characterizes the strength of the spin~2-field-matter-field coupling.

The corresponding Lagrangian now can be written as

(L) (1)

L=1L + «L

(1) _ 4 4w
L et - (3.3)

It is well-known, however, that this coupling scheme, as it stands, is
inconsistent: tuv is conserved only tb the extent that the effect of the
¢-field on the matter field is negligible; otherwisé oM tuv = 0 is replaced
by

u -
) (tuv + Tuv) =0 (3.4)

where Tuv is the energy-momentum tensor of the ¢-field, For this relationship
to follow from the Lagrangian, the latter has to be modified. The result of
this procedure, as shown by Gupta, Kraichnan, Wyss, Deser, and others}4 is

precisely the non-linear Einstein-equation,



AR R HOTCNE S AN O) (3.5)

o _ <P 2
Au(cb) v6“+0 ()

The details of this and the origin of the Aup(¢) coefficient will be
discussed in the next section. In a more conventional notation (3.5) is

equivalent to

c k2
u\,(<t>) = - 7T'tuv
(3.6)
Guv = va -k guvR
el B_rpa. B _ o a
Ruv N ruB av nv afB v Fua - 3 ruv
a af
= k- + -
I‘W h (avgBu augsv aBguv)
and
Bv = Ny + Kd)]-l\)
(3.7)
up = sH
h gpv 6

Even though the equations have their well-known geometric interpretations,
we wish to avoid emphasizing that aspect; guv here is merely an abbreviation
defined by (3.7); correspondingly we distinguish between'guv and its inverse

"’ (not guv).
s L

- sntY
Einstein Lagrangian L(E) (the notation L is intended to underline the difference

The Lagrangian that generates (3.6) through = 0 is the familiar

between the quadratic (linearized) Lagrangians L(¢) and the full non-linear

Lagrangians L(g)), combined with the interaction Lagrangian:




(E) _ By
L' = - Fgln Ry (3.8)

L= 0 ® 42 (D

K

Now, turning to the problem of the coupling of the massive spin-2 field
to the matter field, we observe that with a source Suv

PO 2 po = -
vuv ¢pc +qu Fuv ¢po K suv (3.9)

there is no need to require that Busuv = (0; taking the divergence of (3.9)

merely results in

H - = _ K U
(e, iy B LN (3.10)

Taking the trace of (3.9) and substituting (3.6) in the resulting equation,
generates the subsidiary conditions

= K 2 u,v i
¢ 32 {s + " 99 Suv} (3.11)

Thus, it appears that in contrast to the massless spin-2 theory, it is possible
to construct a linear, massive spin-2 theory, without running into manifest

inconsistencies (by choosing, for example,

5,0 = mfdT 8 = ENE(ME@ (3.12)

i.e. the energy-momentum tensor of the non-interacting field, as the source).
There are, however, at least two difficulties with this approach. (i) even
though there are no manifest inconsistencies in the theory, it is not evident
at all that reasonable solutions of the field equations combined with the

equation of motion for the particles can be obtained without violating the




subsidiary conditions (3.11). (ii) The theory doesn't have any smooth
1limit for p»0: the massive source term Suv is completely different from

the massless Ai(tp

+ T ) source.
v pVv

The philosophy we adopt in the present paper is different. We will
require that the theory, on the one hand, be a "smooth" continuation of
the massless Einstein-theory, (in the restricted sense that in the py = 0
limit the Einstein field equations are recovered) and that, on the other
hand, in the linear limit it reduce to the correct Pauli-Fierz formalism
of massive spin-2 fields. Thus we add a mass term, say % u? Huv(¢)’ to

the Einstein equation. We note that since the fully interacting theory with

zero mass is non-linear, there is no a priori reason to expect this mass
term to be linear. Moreover, in the non-linear theory there exists no
equivalent of the Pauli-Fierz ﬁass criterion to serve as a guide for setting
up the mass term. Since, however, the mass implies a finite range or an
asymptotic fall-off of the forces, we shall take Huv to be independent of
field derivatives. Thus, the equation of motion of the massive spin~2 field

will now have the form:

2

2 = - £

SL

The corresponding Lagrangian that generates (3.13) through ™ 0 now is
-igl dg
=L a® 2 (@ 42 (D (3.14)
K

L(M) should be independent

where L(M) denotes the massive part of the Lagrangian.
of field derivatives, and its variation with respect to the field will give

i Huv (the L factor is inserted for convenience),
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At this point, it is important to note the essential difference between
the massless and massive theories. The mass breaks the gauge invariance
and, unlike the massless case, the massive theory doesn't lend itself to a
(Riemannian) geometric interpretation. As far as the dynamics is concerned,
however, we may draw analogies with the gravitational case, although such
analogies must be considered as purely formal. All indices in the present
formalism will be taken to indicate Lorentz indices. As we have pointed out
already, we shall introduce different symbols for the "metric" (guv) and its
inverse (hW'V). Raising or lowering of indices will be performed solely by

. . . v . .
using the Minkowski tensor an’ and not hu or guv' We will also introduce

= Hv
gll

/Tl W

"

lgl = det g, = (det ")l = det g WY (3.15)
1 . - uv
8, = = —— minor g
u L.'g‘!
g =tr g
We already have
guv =Ny + « ¢uv . (3.16a)
Analogously, we define EMV by
g’ ="V 4 (3.16b)

Then, in the small field limit

V= ¢V ey 'V g (3.16¢)
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and

= 'V - MY (3.164)

There is no a priori preference, at this point, as to which of these quantities
is more appropriate to characterize the physical field,

To conclude this section, we mention earlier works aimed at constructing
a general theory of an interacting massive spin~2 field. Ogievetsky and
Polubarinov4 have constructed Lagrangians, characterized by two parameters
p and q, that lead to the subsidiary condition

u =
Mo, tade =0

instead of (2.1) and (2.2). Their source term, however, is not the total stress
tensor euv but rather

1
-— (35 + 32) o
uv 3u2(uv v )

The physical interpretation of such a source term is unclear. Besides, the
massive part of the Lagrangian does nﬂt possess the required Pauli-Fierz
criterion. Freund et al.,15 vhose approach is most‘similar to ours, have
proposed a massive version of Einstein's gravitational equations; however,
their theory also suffers from the non~compliance with the Pauli-Fierz limit
for the mass term, and as such, it is also unsatisfactory in the linear limit,
In a different context Salam and Strahdee16 discussed the Lagrangian for the

combination of Yang-Mills and tensor fields.
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IV, DERIVATION OF THE LAGRANGIAN

To obtain the massive part of the Lagrangian for the linear Pauli-Fierz
Lagrangian we follow the same path that leads to the Einstein Lagrangian

from the linearized L(L). The principal milestonesu"15

along this path are
now enumerated,

1) The "mixed" '"tensor-density" is identified as the representation

where the origin of non-linearity is manifest:

CLACVRE S “
with
gley _ 1 p zz 2°°
D gz = - %Y 2, 35 + 65 3Y 2, + 5:: 2%, - &2 5:; 32 (4.2)

obtained from (2.3) with the substitution (3.16b) and (3.16c).

2) Tg, the canonical stress tensor density, is

(E)
gL ) g o (B) , g0
a
(4.3)

(E)

=L bg & ————31‘_\) - &g AL 3

k2 Bagu
= 7 (B
T B
where §% is the symmetrizing Belifante term: it depends on the derivatives

B

of the field only and its detailed structure is of no relevance for our
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purpose. T® is the operator defined by (4.3). The transformation from the

8
afl —af . . .
h™ " -representation to g  -representation is effected with the aid of the
relation
dz*® = /Tg] an®® - 5 n*® gy dn™ (4.4)

3) GaB and the source taB are derived from the variation of the

Lagrangian L =-£f (L(E) + 2 (D)

N T A
* /TaT on®®
(4.5)
A
% thp = B
-ig| Sh™
4) As a result, the Einstein equation can be put in the form
zad =po _ _ 2 =0 - ay
Nas Dpo g K (TB + gl h tYB) (4.6)
with the Lagrangian satisfying the differential equation
(E) 2 ‘
8§ &L L =ay —po , kK¢ =a ,(E)
= + — 1 4'7
W g Ty G BT T L (4.7)

The massive term is now to be characterized by the additional term in the

Lagrangian L(M) [} = 55-(LE + uzL(M) + k2 L(I) i],and the additional term

in the equation of motion, % Hu The equivalents of (1) through (4) above

B.
now lead to the following steps.

1) The massive contribution HuB is split into the linear part plus

the massive stress tensor density:

w2 /2 g Y B, = u? ﬁ(L)a + 2 T(M)a

4,8
v8 B B (4.8)




14

with
DD < B (@9 - 00
(4.9)

puty ) ‘ o a
F*Y = ¢ 6: + % q Y n

po p po

obtained from (2.3) with the substitution (3.16b) and (3.16c).

2) uZT(M)g , the canonical massive stress tensor demnsity is given by

L 0D

T(M)a = fa L(M) = __u_j__ 5 (4,10)
K

o
B B B

3) H _ is derived from the variation of the massive Lagrangian,

aB
Y A U YA

LA P S P )

LH (4.11)

4) The full massive field equation can now be put in the form

ngs (7% + 12 Foo @ - nP%} (4.12)

2 (RO — oy
K (TB + lg' h tYB)

=Ma

o p(B)a w2 T 5

TB = B

with the massive Lagrangian satisfying the differential equation

) -
ay 9L - aY (=0 _ POy _ 1 <O (M) ¥
h _—ahYB L ey ch (g no)~-% G_B L (4.13)

or, using (4,4) and (4.9)

4:)) ™
-ay 9L _ o 3L PO _ 0 _ a0,y o= ca (M)
28 BEYB 6B B§DG & &g 368 + GB & GBL (4.14)

For reasons to be explained below, we generalize (4.12), by allowing for

the massive part of the stress temsor to carry an additional weight, say z,
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leading to the replacment of the total field stress tensor density as

=(E)a =Ma _ o 2 =(Ma
TB »> T 8 + (1 + z)u T 8 'I.‘B + zpc T 8 (4.15)
and resulting in
) ™
250y 3L~ aL _ 9L 7 =po _ 2 s¢ 7 - (D
gYB GB 3gp° g B 36B + L 8 g ) (1 +2) 1L (4.16)

as the basic equation for the determination of L(M).

In principle, L(M), which does not depend on the derivatives of the

field, can depend on any invariant that we can construct out of the field
components. As noted by Freud et al.,15 one such invariant is p = V—|g| H
should L(M) depend only p, then Eq. (4.16) could not be obeyed (because of

L @D

the présence of the term gg); in addition to p, has to depend on at

least one more Lorentz-invariant quantity: the simplest such quantity is

g = trg"’ = L g“v. We shall thus assume that L(M) depends on g'° only
through the invariant combinations p and g.
Noting that
8P _
——=%g
aguv uv
8
ey nuv (4.17)
and consequently
™ M M
95 ol ) = 25 (3 ¢ L( ) + 1 BL_ )
L YB op YB 9g
g
. oL o 0D

(4.18)

I
=g
™
e~
Y
=
o
w
@
ool



we have

BL(M) —p0 : 3L(M) + 8L(M) =00
3aP° & K gpo ap po  3q
g
™) M)
_ oL - 3L
= 2p 5p + g Y ’ (4.19)

By using (4,16) we further obtain

D ™ M)
Ga(%§—3—(1+Z)L(M)+§§éT-+pBL )+§Cx(1_zal_ )=0

B p B g
(4.20)
For Eq. (4.20) to have a solution the coefficients of both 6; and
gg have to vanish. The latter requirement yields
L(M) =1 g + K(p) (4.21)

where K(p) is still to be determined. (4.21) combined with (4.20) leads to

-3+'g'{1-14(1+z)}-(1+z)1<(p)+pd—§l(;ﬂ=o (4.22)

(4.22) is consistent only if the coefficient of g is 0, yielding

z=1 (4.23)

At this point the justification of introducing the renormalized weight

(1 + z) emerges. We see that the naive choice z = 0 leads to inconsistencies.
On the other hand, the choice z = 1, signifying in effect that'the massive

part of the field energy-momentum couples with a double strength to the field
itself, generates a perfectly reasonable solution: in particular, the linear
limit has the physically required Pauli-Fierz form. Apart from the consistency
requirement we cannot, at this point, provide an intuitively simple explanation
of the doubling effect - although we suspect the existence of a simple physical

picture,
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Returning now to (4.22), its solution with z = 1 1is immediate:

R() = = 3 + kp?

(4.24)
L0 =—%+ kp?2 + 4 g

The constant of integration, k,can be fixed by requiring that at §a8= naB at

L(M) = 0. This way we find k = - % and

LM _y G+ gl - 3) (4.25)

It is perhaps more illuminating (and more pleasing) to rewrite (4.25) as

()

LY =% {1+« ¢+ det 0" +« ")} (4.26)

The resulting massive term in the field equation (3.13) is calculated from

(4.25) with the aid of (4.11) or (4.8), -(4.9) and (4.10):

= 1 p o - 1 P
Ho g, {8 npy(lgl +4%g)} (4.27)
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V. THE SUBSIDIARY CONDITION

In this section we describe and discuss the subsidiary conditions of the
nonlinear theory. It is convenient to use (4.12) combined with (4.15) as a

starting point. Taking the divergence of the combined equation, one finds,

20n TUV g aVmy 2.2 Mu
3 + 9 = - 2 T
u{ 18 % 0 'gl Ze“ued v
=+§u23"(§+ lgh (5.1)
that is
c g -2 o lgl +% A - 2) Vg =0 (5.2)
We note that in the linear theory
lg] = - (1 + «P)
o _ (5.3)
g =4+ «é

and the divergence condition reduces to the familiar (2.6), dirrespective of the
value of z. z = 0 would leave this linear condition unaltered. With the required

z = 1 conditions observed, however, (5.1) becomes

auguv -%3"|gl =0 (5.4)

(5.4), even though it consitutes a set of non-~linear differential equations,
is not substantially different from (5.2) and can serve to eliminate 4 degrees
of freedom.

Turning now to the trace condition

-2 {3°3° §po +% 32 5} +3u2(g - 4) = - T + t* + 270y
(5.5)

one observes that by using (5.4), (5.5) can be rewritten as
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zd32(g + |g|) + u2{2z|g| + 2z - 3)g + 6(z - 2)} = - K2(T + ©*) (5.6)

Again, in the linear limit one recovers the condition (2.7) which remains

unaltered for z = 0. However, for z = 1 one obtains
2(g + [g]) + u22|g| - g + 6) = - (T + T*) 5.7

Thus, because of the appearance of the second order time derivative, (5.7)
ceases to be a constraint condition on the full non-linear theory, and the

6th degree of freedom remains inextricably coupled to the 5 spin-2 degrees.
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VI. THE SOURCE TERM

In order to exhibit the details of the way the spin-2 field couples
to the matter-field, we discuss in this section the structure of the classical
stress tensor that appears as the source in Eq. (4.12). The aspects of the
quantum situation where a matter field is coupled to the spin-2 field
will be discussed in a separate paper.
The source term in (4.12), say - K2 E*S » can be expressed with

the aid of (4.5):

2T%H _ 2 7 Ia oy
- Kt E Y h t
v Y8

(1)
= — 2¢2 p%Y 3L (6.1)

oL (D)

BgaY gYB

- 2¢2

i

In the choice of L(I) we are guided again by the general relativistic analogy,

and set

L(I) =-m J-V—up &g u@ 8(x - E£(T1))dt (6.2)

Here m is the mass of the source particle, £(t) its trajectory and W’ = dg%/dr.

The source term thus becomes

% = 4+ my 0™ 6.3
g Mv uu gYB (6.3)
u® = u¥(x) is now to be understood as a hydrodynamic variable, v = v(x) is

the invariant density

vix) = fo(x - £() ¢ (6.4)
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and M

M= —&8 (6.5)
/=P

can be interpreted as the variable rest mass. This interpretation is suggested
by the generalized Lagrangian formalism for relativistic particles.17 Writing

(D

in the form

L = fA@) 6(x - £(x)) dr

y 7 (6.6)
= - -— O
mvl -k u ¢aBu
. . . 17
the variable rest mass is given by
M = N a® - A 6.7)
a
du
leading indéed to (6.5).
The (canonical) particle momentum is, in the same formalism,
p =M +22 (6.8)
H H Ju .
- v
= Mguvu
which allows one to write (6.3) in the form
7% =y J° 6.
thy = v u py (6.9)

pu so defined now has the property that it generates the equation of motion

of the particle through

Py _an
dt ax“
(6.10)
3¢
=Ky ® o8B B
2 u




22

This is, of course, only an alternative expression of the general energy-
momentum conservation BD(TS + E*t) = 0.
It is instructive to consider the linearized versions of the relations

derived in this section. (6.2) becomes
() _ _ { _k a B _
LD - af 1 -Lu% o } 5(x - £(0)) dr (6.11)

which represents the most natural coupling scheme for a linear tensor field.

The linearized equivalents of (6.5) and (6.7) are17

K

- a B
M=mn(l + 7 u ¢a6u ) (6.12)

v
=Mu + «kmnm u
le H ¢11V

We observe that by introducing the new field variable oMV through the re-scaling

oMV = 4 ¢ %4»“" (6.13)

where f is the "charge" associated with the tensor field, the equation of
motion takes a more familiar form; o™ now plays the role of the tensor-

potential. In the field equation the identification
k2 =16 = = (6.14)

is necessary to arrive at the generalizatidn of the customary ‘structure.

The important conclusion emerging from this section is that in addition
to the manifest non-linearities of the field equation, further non-linearities
appear through the iyplicit guv dependence of the source term, which in turn,

can be traced to the field dependence of the particle rest mass and momenta.
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A further conclusion, which will be exploited in a subsequent paper, is that
in the case the interaction is mediated by scalar, vector, etc., particles
in addition to the spin-2 mesons, the coupling through the energy momentum
tensor requires a "universal' coupling of the spin-2 field to the other
(scalar, vector, etc.) fields with the same coupling strength as free matter.

This, and the implication of such a theory on the three fundamental tests of

relativity, are being studied.
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VII. CONCLUSIONS

In this paper we have constructed a Lagrangian theory of particles
interacting through a massive spin-2 (tensor) field. The Lagrangian and the
field equation are found to be non-linear, the non-linearity being principally
the manifestation of the dynamical requirement that the spin-2 field couple
to the total energy-momentum tensor of the system. This at the same time,
implies that the spin-2 field should couple to all other fields with a universal
coupling strength. We point out that the dynamics of the full non~linear theory
dictates that an extra '"ghostlike" scalar degree of freedom always accompany
the spin-2 field. However, this does not necessarily lead to the energy being
unbounded from below (as to be demonstrated in the subsequent papers). The
main merit of the theory presented here is that in the limit of weak coupling,
where one is in a position to make definitive statements about the excitations
and about the boundedness of the energy, all spurious excitations we avoided,
and the formalism is fully consistent with the constraints on the field variables.
This is a minimum requirement for any consistent interacting massive spin-2
theory, and in this respect our results represent the first satisfactory
formulation of such a theory. This is a departure from all previous formulatijons;
these latter do not comply with the Pauli-Fierz criterion, and so remain unsatis-
factory even at the limit of weak coupling.

Our field equations bear obvious similarity to the Einstein gravitational
equations. However, the mass term has no relationship-to the cosmological term
of the Einstein theory. If viewed as a theory of gravitation the theory thus
violates the equivalence principle, and hence no "general covariance" is implied
by it; neither is it devoid of all the difficulties plaguing "finite range"

gravitational theories.13 Nevertheless, in view of the problems that are
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associated with quantizing Einstein's theory, one may question the requirement
of general covariance. In that case, the present formalism can be viewed from
the point of setting up an acceptable theory of a finite-range gravitation.
The cosmological ramifications of such an attempt, however, remain to be

seen.
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